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The case of plane flow about a single body, when the exterior or the in-
terior of a circle maps conformally onto the exterior of the contour of
the body, is considered in detail in the literature and does not offer
any special mathematical difficulties. It is, however, more complicated
to solve problems of plane flow in a doubly-connected region; for condi~-
tions where a known function conformally maps an annulus X, with radii
p, and p, onto the doubly-connected region S which the flow occupies (we
assume that the region S contains the point at infinity), the solution
may be unwieldy. We shall show here that, as soon as one knows the func-
tion

c=w)  (z=z4 iy, §=pet?) ()

which gives the conformal mapping of the annulus onto the exterior of
two contours, the velocity potential ¢ can be formed immediately.

We assume that the contour C1 of the region § corresponds to the
circumference of radius p = 1 in the region 2. The ratic of the radii
plfpz = 1/p2 is determined geometrically by the form of the region S.

In (1), separating the real and imaginary parts, we get r= x{p, 0),
y = y(p, 6) where p and @ are curvilinear coordinates in the region S.
The velocity potential satisfies Laplace’s equation, which in curvi-
linear coordinates has the form

Here Hp and Hy are the Lamé parameters for the p- and @-coordinates
(where p means the coordinate normal to the curves p = const in the
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direction of increasing p)
Oz \2 dy\? dz \? dy \2
2 {2 -l 2. [ 5 A .
ar=(5) +(5)  #o=(5) + (% ®
Because the mapping (1) is conformal, z(p, @) and y(p, 8) are con-
nected by the Cauchy-Riemann conditions
or _toy oy __d
9 p 09’ 7
On the basis of (3) and (4) we have Hp/ﬂb = 1/p, and Equation (2)
takes the form

Furthermore, it will be shown that the boundary conditions for the
problem considered, the plane irrotational flow about two cylindrical
bodies (or the motion of two bodies in an unbounded fluid) have much the
same form as in the Neumann problem for the annulus. Moreover, in the
expansion of 895/6;3 on the contours into a trigonometric series the
free term is not present and so the solution of Equation (5) is sought
in the form [5 ]

[ee] 0
¢ = Bob + 2 (Apo™+ A_2o" ™) cos md — Z (B, 0" - B__ o7 " siund (6)
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We shall solve the problem of determining the velocity potential in a
curvilinear coordinate net. The net will be taken so that the contours
of the cylinders C, and Cé are defined by the curvilinear coordinates

p=1andp = p,.

1. We shall first consider the case of the plane-parallel motion of
two bodies in an unbounded flow. We shall limit ourselves to translation-
al motion with equal velocity vectors V. In the usual case of motion the
ratio p,/p, = 1/p, will be some function of time t. The velocity poten-
tial ¢ satisfies Equation (5) and the following boundary conditions:

On the contours of the cylinders we have the condition of non-penetra-
tion

d 1 9
E? :7{:% =V cos(p, z) +V, cos(p, y) 7
with
1 ox 1 ay i Lo
cOS(.o,x)zgp-g, cos<9.y):§;;;; (Z%—-—O. Hp=!mms) (8)

then substituting (8) into (7), we have forp =p, = 1
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For p = p,
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m=]

p1(0) and p2(0) can easily be found if the mapping function (1) is given,

The constants in the series (9) and (10) are absent; it is not diffi-
cult to convince oneself of this by expanding w({) = xz(p, ) + iy(p, 6)
into a Fourier series for p = 1 and p = p,.

Substituting (6) into (9) and (10) and equating coefficients of the
same trigonometric functions, we obtain two systems of two equations with

two unknowns, defining Am, A_m, Bn, B_m.
For the velocity potential we obtain

% (am(l) pg—m—l_ alm(z)) o™ - (:m(l)pgm—l_ 1m(2)) o~
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It is evident that finding ¢;(p, 0) reduces to the solution of a
Neumann problem for an annulus [2 ]. The function ¢ (p, 6) represented
by series (11) is harmonic in the ring (1, p,) and it follows that it is
unique and continuous together with its derivatives up to and including
the second order. The constant B, is determined by the given circulation
on one of the contours; forp =1

o r

Fl =
1’:R%ds;:smd&:2n30 or By 5= (12)
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For the solution of the problem of the motion of two bodies in an un-
bounded fluid the velocity corresponding to the chosen potential ¢ must
be zero at infinity. We shall check whether this condition is fulfilled.
Let the point A of the region correspond to the point at infinity of the
region S, Because the mapping (11) is one to one then the function
{ = F(z) accomplishes the conformal mapping of the doubly-connected
region S onto the circular ring % . It is known that the isolated singular
points é = A (poles) of the function w(é) determine the point of inter-
section (9F/dz = 0) of the inverse function [4 ], so that for |z| -

|
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We now show that the velocity corresponding to the potential ¢ deter-
mined from Formula (13) actually equals zero at infinity, i.e. for
z - OQ

s 09 99 dp dg 0% r oo 6¢ 09 dp | 09 8%
VS = T e T e Vv Ty TG ay Tasay =0 (14)

Because ¢>(p, @) is a harmonic function in the ring, d¢/dp, /30
take on finite values at all points of the ring (and it follows also in
the region S) including the point { = A, and on the basis of (13) it is
not difficult to see the correctness of (14).

2. We solve analogously the problem of the potential flow about two
eylinders, We take the flow such that the x- and y-components of velo-

city at infinity are Vx°°, VJ,"“.

We shall seek ¢ in the form

=",z 4+ 1V, y+ g (15)

where ¢1 satisfies Equation (5) and can be found in the same form as (6).
The constants

B . B

m? “temt Pmr P
are determined from the boundary conditions. On the contour of the
cylinders

o -0, 1 0¢--0

I or H 3o for p==1and p=p: (16)

Inserting (15) into (16) we get

{}(‘?1“——? oy_rpooax

P = gs TVy gg fore=l )
op 1 . dy dr
rplzg;<—‘x 71.;:“%"1,006—3) for P =p2 (18)

Comparing (17) and (18) with (9) and (10} we conclude that the find-
ing of ¢1 is identical with the previous problem, except that V_and V.
have to be changed into — V,™ and — V™. As in the previous case the
velocities corresponding to ¢; equal zero at infinity. Knowing b, N
it is not difficult to find the projection of the velocity vector in the
directions p and ¢ at any desired point

e

vV — 1 0 1 99 . 1 dg 1 op

7

CTH G (@@l 2T H, 3 plo @] (19)

From (19) it is seen that the problem is solved in the curvilinear
coordinates obtained by the conformal mapping of a circular ring onto the
given region.
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